90 research outputs found

    Fringe trees, Crump-Mode-Jagers branching processes and mm-ary search trees

    Full text link
    This survey studies asymptotics of random fringe trees and extended fringe trees in random trees that can be constructed as family trees of a Crump-Mode-Jagers branching process, stopped at a suitable time. This includes random recursive trees, preferential attachment trees, fragmentation trees, binary search trees and (more generally) mm-ary search trees, as well as some other classes of random trees. We begin with general results, mainly due to Aldous (1991) and Jagers and Nerman (1984). The general results are applied to fringe trees and extended fringe trees for several particular types of random trees, where the theory is developed in detail. In particular, we consider fringe trees of mm-ary search trees in detail; this seems to be new. Various applications are given, including degree distribution, protected nodes and maximal clades for various types of random trees. Again, we emphasise results for mm-ary search trees, and give for example new results on protected nodes in mm-ary search trees. A separate section surveys results on height, saturation level, typical depth and total path length, due to Devroye (1986), Biggins (1995, 1997) and others. This survey contains well-known basic results together with some additional general results as well as many new examples and applications for various classes of random trees

    Normal limit laws for vertex degrees in randomly grown hooking networks and bipolar networks

    Full text link
    We consider two types of random networks grown in blocks. Hooking networks are grown from a set of graphs as blocks, each with a labelled vertex called a hook. At each step in the growth of the network, a vertex called a latch is chosen from the hooking network and a copy of one of the blocks is attached by fusing its hook with the latch. Bipolar networks are grown from a set of directed graphs as blocks, each with a single source and a single sink. At each step in the growth of the network, an arc is chosen and is replaced with a copy of one of the blocks. Using P\'olya urns, we prove normal limit laws for the degree distributions of both networks. We extend previous results by allowing for more than one block in the growth of the networks and by studying arbitrarily large degrees.Comment: 28 pages, 6 figure

    Limit Laws for Functions of Fringe trees for Binary Search Trees and Recursive Trees

    Full text link
    We prove limit theorems for sums of functions of subtrees of binary search trees and random recursive trees. In particular, we give simple new proofs of the fact that the number of fringe trees of size k=kn k=k_n in the binary search tree and the random recursive tree (of total size n n ) asymptotically has a Poisson distribution if kβ†’βˆž k\rightarrow\infty , and that the distribution is asymptotically normal for k=o(n) k=o(\sqrt{n}) . Furthermore, we prove similar results for the number of subtrees of size k k with some required property P P , for example the number of copies of a certain fixed subtree T T . Using the Cram\'er-Wold device, we show also that these random numbers for different fixed subtrees converge jointly to a multivariate normal distribution. As an application of the general results, we obtain a normal limit law for the number of β„“\ell-protected nodes in a binary search tree or random recursive tree. The proofs use a new version of a representation by Devroye, and Stein's method (for both normal and Poisson approximation) together with certain couplings

    Asymptotic distribution of two-protected nodes in ternary search trees

    Full text link
    We study protected nodes in mm-ary search trees, by putting them in context of generalised P\'olya urns. We show that the number of two-protected nodes (the nodes that are neither leaves nor parents of leaves) in a random ternary search tree is asymptotically normal. The methods apply in principle to mm -ary search trees with larger mm as well, although the size of the matrices used in the calculations grow rapidly with m m ; we conjecture that the method yields an asymptotically normal distribution for all m≀26m\leq 26. The one-protected nodes, and their complement, i.e., the leaves, are easier to analyze. By using a simpler P\'olya urn (that is similar to the one that has earlier been used to study the total number of nodes in m m -ary search trees), we prove normal limit laws for the number of one-protected nodes and the number of leaves for all m≀26 m\leq 26

    The fluctuations of the giant cluster for percolation on random split trees

    Full text link
    A split tree of cardinality nn is constructed by distributing nn "balls" in a subset of vertices of an infinite tree which encompasses many types of random trees such as mm-ary search trees, quad trees, median-of-(2k+1)(2k+1) trees, fringe-balanced trees, digital search trees and random simplex trees. In this work, we study Bernoulli bond percolation on arbitrary split trees of large but finite cardinality nn. We show for appropriate percolation regimes that depend on the cardinality nn of the split tree that there exists a unique giant cluster, the fluctuations of the size of the giant cluster as nβ†’βˆžn \rightarrow \infty are described by an infinitely divisible distribution that belongs to the class of stable Cauchy laws. This work generalizes the results for the random mm-ary recursive trees in Berzunza (2015). Our approach is based on a remarkable decomposition of the size of the giant percolation cluster as a sum of essentially independent random variables which may be useful for studying percolation on other trees with logarithmic height; for instance in this work we study also the case of regular trees.Comment: 43 page
    • …
    corecore